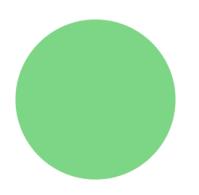


SYMPOSIUM NUTRITION AND HEALTH


Zürich, Donnerstag, 30. November 2023

Pflanzliche Ernährung in der Pädiatrie: Braucht es Strategien zur Vorbeugung von Nährstoffmangel?

Vitamin D- und Calcium-Mangel

Dr. med. Pascal Müller pascal.mueller@kispisg.ch

SYMPOSIUM NUTRITION AND HEALTH

Zurich, Thursday, November 30, 2023

Conflicts of interest:

- Member of the Federal Commission for Nutrition since 2020

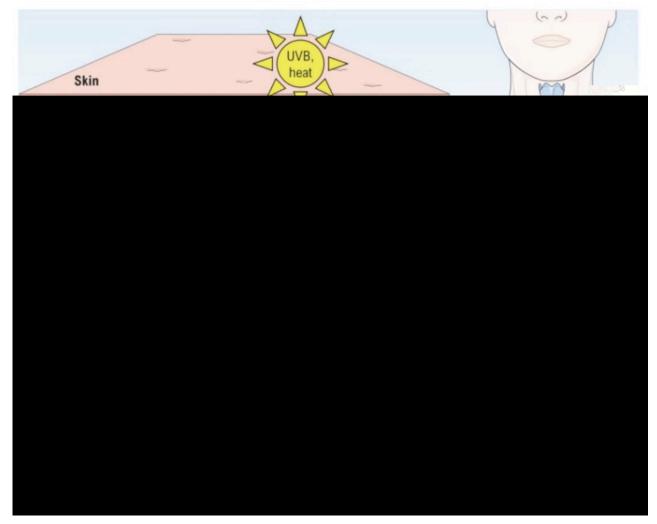
Dr. med. Pascal Müller pascal.mueller@kispisg.ch

Background: Physiological role of Ca++ and Vitamin D

Vitamin D

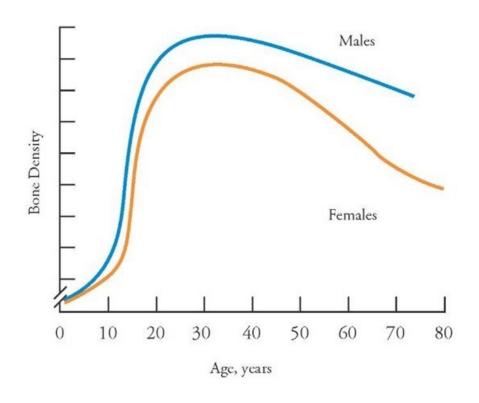
Functions:

- Promotes the absorption of calcium and phosphate in the intestine and their incorporation into the bones.
- Regulates calcium and phosphate metabolism together with other hormones.
- Central for healthy bone and tooth formation.


Calcium

Functions:

- is the most important mineral in the human body in terms of quantity.
- 99% stored in bones/teeth
- Involved in various cell functions: Factor of blood coagulation, stabilization of the cell membrane, signal transmission in the cell and in the nervous system as well as muscles


Background: Physiological role of Ca++ and Vitamin D

doi:10.3390/ijms19020455

Bone health (calcium & vitamin D)

Nutritive factors for bone health:

- Vitamin D
- Calcium
- Vitamin K
- Magnesium
- Potassium
- Proteins (Isoflavones)
- Acid-base balance

good supply in vegan nutrition

Background: Health consequences of deficiency

Hypovitaminose D and insufficient calcium intake

- Promotes osteomalacia (insufficient mineralisation) or osteoporosis (decreased bone density;
 increased bone fragility) because calcium is broken down from the bones.
- General tiredness
- Muscle weakness
- Diffuse bone and muscle pain
- In children: Rickets (skeletal deformity)

Biomarkers and thresholds to define deficiency

Handlungsanweisungen vegetarische und vegane Ernährung im Säuglings- und Kleinkindesalter

11.03.2020

Bone metabolism:

25-OH-cholecalciferol; Ca, Ph, Creat (serum & urine, respectively), alk Phos, PTH

Vitamin D, Calcium-	Vitamin D (25-OH-	Keine Routinemässige Bestimmung	>75 nmol/l optimal; 50-
Phosphatstoffwechsel	Cholecalciferol)	empfohlen bei Supplementierung gemäss CH-Empfehlung und	74 nmol/l adăquat; 25 – 50 nmol/l Insuffizienz, <
		fehlenden zusätzlichen	25 nmol/l schwerer
		Risikofaktoren für einen Mangel.	Mangel
	Calcium,	Bestimmung bei klinischer	
	Phosphat,	Symptomatik einer Rachitis,	
	Creatinin (Serum)	symptomatischem Vitamin D	
	Calcium,	Mangel oder nutritiver	
	Phosphat,	Unterversorgung von Calcium bzw	
	Creatinin (Urin)	Vitamin D.	
	Alk. Phosphatase	Erhöht: u.a. Marker des	Altersentsprechende
		Knochenstoffwechsel	Normwerte beachten
		Erniedrigt: u.a. Marker für	
		Zinkmangel	

Dietary sources of vitamin D

Daily requirement:

 $(1 \mu g = 40 IU)$

Included in:

Egg, liver, fatty fish, mushrooms.

Other foods are generally low in vitamin D.

On average only approx. 2 to 4 micrograms (80 - 160 IU) of vitamin D per day through food.

Nährstoffe				Weitere Hinweise
Vitamin D 1	7-11 Monate ♂	10 μg/Tag *Infos (22) 🚺	22 1	<u>Infos</u>
Vitamin D 🚺	7-11 Monate ♀	10 μg/Tag *Infos (22) 🚺	22 🚯	Infos
Vitamin D 🚺	1-3 Jahre ♂	15 μg/Tag *Infos (22) (1	22 🐧	Infos
Vitamin D 🚺	1-3 Jahre ♀	15 μg/Tag *Infos (22) i	22 🚺	Infos
Vitamin D 🚺	4-6 Jahre ੈ	15 μg/Tag (22) 🕦	22 🐧	Infos
Vitamin D 🚺	4-6 Jahre ♀	15 μg/Tag (22) 🕦	22 🚺	Infos
Vitamin D 🚺	7-10 Jahre ී	15 μg/Tag (22) i	22 🚺	Infos
Vitamin D (1)	7-10 Jahre ♀	15 μg/Tag (22) 📵	22 🚯	Infos
Vitamin D 🚺	11-14 Jahre ී	15 μg/Tag (22) i	22 🚺	Infos
Vitamin D 🚺	11-14 Jahre ♀	15 μg/Tag (22) i	22 🐧	Infos
Vitamin D 🚺	15-17 Jahre ී	15 μg/Tag (22) 〔	22 🚺	Infos

- M	AIR DIDO P
Felche, roh	22
Lachs, Wild	15-25*
Sardine im Öi, abgetropft	6
Fisch Ø, roh	5,3
Lamm/Schaf Ø, roh	3,8
Eler	2,9
Lachs, Zucht	2,5-6,25*
Pilz Ø, roh	2,6
Kalbfleisch Ø, roh	2,5

Quelle: Schweizer Nährwertdatenbank / *Vitamin D-Empfehlungen des Bundesamts für Lebensmittelsicherheit und Veterinärwesen (BLV)

Dietary sources of calcium

Daily requirement

Nährstoffe	Alter und Geschlecht	Menge und Quellen	Referenzen	Weitere Hinweise
Calcium i	7-11 Monate 🖒	280 mg/Tag (30) 1	30 i	<u>Infos</u>
Calcium i	7-11 Monate ♀	280 mg/Tag (30) 1	30 i	<u>Infos</u>
Calcium i	1-3 Jahre 🖒	450 mg/Tag (30) 1	30 i	Infos
Calcium 🚺	1-3 Jahre ♀	450 mg/Tag (30) 1	30 i	Infos
Calcium i	4-6 Jahre ♂	800 mg/Tag (30) 1	30 i	<u>Infos</u>
Calcium 🚺	4-6 Jahre ♀	800 mg/Tag (30) 🐧	30 i	Infos
Calcium i	7-10 Jahre 🖒	800 mg/Tag (30) 🚺	30 i	Infos
Calcium i	7-10 Jahre ♀	800 mg/Tag (30) 🚺	30 i	Infos
Calcium 🚺	11-14 Jahre ්	1150 mg/Tag (30) 📵	30 (i)	Infos
Calcium 🚺	11-14 Jahre ♀	1150 mg/Tag (30) 🔒	30 i	Infos
Calcium 🚺	15-17 Jahre ්	1150 mg/Tag (30) 🔒	30 (i)	Infos

Nutrient table BLV

Dietary sources of calcium

Daily requirement

Included in:

Dairy products, calcium-rich mineral water, some vegetables, pulses, tofu, nuts or oilseeds

Oxalates (e.g. from rhubarb and spinach) and phytates (from wholegrain products and pulses) can reduce the absorption of calcium.

1) Calciumgehalt in Lebensmitteln	
LEBENSMITTEL (PORTIONSGRÖSSE)	CALCIUM
Nüsse, Samen, Kerne * / 25 g	43 mg
Milch / 200ml Joghurt, natur / 180g Hart- und Halbhartkäse / 30g	255 mg
Eler / 2 Stück, 110 g	53 mg
Fleisch (Durchschnitt) / 110 g	7 mg
Fisch (Durchschnitt) / 110 g	25 mg
Sardine aus der Dose / 110g	428 mg
Tofu, mit Calciumsalz hergestellt / 110 g	242 mg
Tofu, mit Nigari hergestellt / 110 g	79 mg
Seitan / 110g	40 mg
Hülsenfrüchte / 60 g, Trockengewicht	58 mg
Brot / 100 g	29 mg
Kartoffeln / 240 g Teigwaren / 60 g, Trockengewicht	13 mg
Gemüse* / 120g	28 mg
Weiss- oder Grünkohl / 120g grüne Bohnen / 120g	62 mg
Federkohl / 120 g	288 mg
Mineralwasser mit 300 mg Calcium pro Liter / 200 ml	60 mg
Hahnenwasser (Mittelwert Schweiz) / 200 ml	14 mg
Pflanzendrink (Durchschnitt: Reis, Soja, Hafer, Mandel) nicht angereichert / 200 ml	16 mg
Pflanzendrink mit Calcium angereichert / 200 ml	240 mg

Quellen: Schweizer Nährwertdatenbank: www.naehrwertdaten.ch

Are individuals (including infants and children) consuming a plant-based diet (flexitarian, vegetarian, vegan) at risk of deficiency? What is the available evidence?

Nutrient supply toddlers

- Evaluation of 430 VG, VN, and omnivorous (OM) fed children (1-3 years old).
- Energy and macronutrient supply
- Anthropometry
- Nutrient supply evaluated (questionnaire and 3-day dietary protocol)

- → Critical nutrient intakes in all 3 groups are vitamin D (without supplement), iodine, and DHA, (with OM children having the highest intakes).
- → VN > VG children had lower **calcium** intake than OM, less than half of VN reached the h-AR.
- → 97% of VN children received **supplements** (esp. Vit B12, Vit D)

Table 2 Median daily intake (without supplements) of vitamins and minerals of vegan (VN), vegetarian (VG), and omnivorous (OM) children in the VeChi Diet Study by diet group

	VN (n=139)	VG (n = 127)	OM (n = 164)	h-AR	Basic mod	el ^A	Fully adjust	ied modei [‡]
					P	Partial η^2	P	Partial η^2
Vitamin A (retinol eq) (μg/d)*	550 (377-779)	475 (331–654)	560 (372-854)	205	0,008	0.022	0.008	0.024
β-carotene (mg/d) ^b	3.2 (1.9-5.1)	2.5 (1.4-3.8)	2.3 (1.4-4.6)	_	0.020	0.018	0.002	0.031
Vitamin E (mg/d) ^c	8.3 (6.1-11.7)1	7.4 (5.1-9.9)1	5.1 (3.9-7.0)1	5.0	< 0.0001	0.200	< 0.0001	0.196^{6}
Vitamin K (µg/d) ^d	82 (53-120)1,2	67 (41-86)1	46 (26-72)2	_	< 0.0001	0.099	< 0.0001	0.110
Vitamin B ₁ (µg/d) ^e	569 (437-754)1,2	513 (377-611)1	481 (398-605)2	400	< 0.0001	0.038	< 0.0001	0.124
Vitamin B ₂ (µg/d) ^f	429 (325-537)1	461 (375-641) ²	639 (517-800)1,2	500	< 0.0001	0.175	< 0.0001	0.2025
Vitamin B ₆ (mg/d)8	0.8 (0.6-1.1)1,2	0.7 (0.6-0.8)1	0.7 (0.6-0.9)2	0.5	0.002	0.030	< 0.0001	0.117
Folate (µg/d) ^h	143 (106-197)1,2	116 (96-149)1	108 (90-135) ²	90	< 0.0001	0.148	< 0.0001	0.148^{5}
Vitamin C (mg/d)i	63 (44-84)1	54 (41-66)	45 (32-63)1	15	< 0.0001	0.076	< 0.0001	0.0735
Potassium (mg/d) ^j	1839 (1387-2204)1,2	1567 (1227-1858)1	1513 (1309-1861) ²	_	< 0.0001	0.065	< 0.0001	0.113^{5}
Calcium (mg/d)k#	320 (251-453)1	399 (280-567)	445 (356-553)1	390	< 0.0001	0.059	< 0.0001	0.060
Magne sium (mg/d) ¹	241 (180-310)1	188 (143-240)1	164 (134-195) ¹	65	< 0.0001	0.147	< 0.0001	0.2925
Iron (mg/d) ^m	8.9 (6.0-11.6)1	7.3 (5.5-9.0)1	6.0 (4.7-7.4)1	5.0/10.0*	< 0.0001	0.111	< 0.0001	0.300
Zinc (mg/d) ⁿ	4.9 (3.7-6.2)	4.7 (3.8-5.6)	5.0 (4.1-5.8)	3.6	0.194	0.008	0.111	0.012
lodine (μg/d) ^o	31 (22-44)1	33 (23-45)1	47 (36-61)1	65	< 0.0001	0.118	< 0.0001	0.1675
	VN (n=139)	VG (n=127)	OM (n=164)	h-AR	PΫ́	г		
						VN vs VG	VG vs OM	VN vs OM
Vitamin B ₁₂ (µg/d)	0.2 (0.1-0.4)1	0.6 (0.3-1.0)1	1.5 (1.1-2.3)1	0.7	< 0.0001	0.399	0.471	0.656
Vitamin D (µg/d)	0.7 (0.3-1.1)	0.8 (0.4-1.4)	0.8 (0.5-1.6)	10	0.006	0.120	0.017	0.143

Nutrient supply - Children cohort

- Cross-sectional study
- 149 vegetarian, 115 vegan, and 137 omnivorous eating children and adolescents (6-18 yrs, mean age: 12.7 ± 3.9 yrs).
- Anthropometry, nutritional intake, and nutritional status were examined

Table 2. Energy and nutrient intake (including fortification, without supplements) of vegetarian (VG, n = 145), vegan (VN, n = 110) and omnivore (OM, n = 135) participants of the German VeChi Youth Study (n = 390, 6–18 years old) n = 135.

	VG	VN	OM	Total Model	Pa	airwise Compari	son
	P50 (P25; P75)	P50 (P25; P75)	P50 (P25; P75)	p ² [η ²]	VG-VN p ²	VG-OM p ²	VN-OM p ²
Energy (kcal/day)	1708 (1367; 1975)	1634 (1358; 1903)	1737 (1431; 2150)				
(MJ/day)	7.2 (5.7; 8.3)	6.8 (5.7; 8.0)	7.3 (6.0; 9.0	0.9922 [0.0001]	0.9366	0.9922	0.9922
$ED (kJ/g)^3$	5.94 (5.11; 7.08)	5.39 (4.68; 6.14)	6.16 (5.26; 7.19)	0.0152 [0.0238]	0.0039	0.6110	0.0512
Macronutrients							
Protein (g/kg BW/day)	1.14 (0.88; 1.53)	1.16 (0.89; 1.67)	1.36 (1.07; 1.74)	0.0011 [0.0386]	0.0180	0.0011	0.5918
Carbohydrates (%E)	54.7 (50.2; 59.3)	56.5 (50.6; 61.2)	49.1 (45.0; 54.6)	0.0002 [0.0679]	0.2994	0.0002	0.0002
Free sugars (%E) 4	11.6 (8.1; 15.4)	6.6 (4.0; 9.5)	10.5 (7.3; 15.5)	0.0002 [0.0929]	0.0002	0.1789	0.0002
Dietary fibre (g/1000 kcal)	14.7 (12.0; 17.7)	21.9 (18.0; 25.5)	12.0 (10.1; 14.2)	0.0002 [0.2082]	0.0002	0.0006	0.0002
Fat (%E)	32.3 (28.0; 37.8)	29.4 (25.3; 36.6)	36.4 (30.7; 40.6)	0.0037 [0.0316]	0.0368	0.0376	0.0010
SFA (%E)	12.5 (9.9; 15.6)	7.8 (5.9; 10.3)	15.9 (12.9; 18.8)	0.0002 [0.1888]	0.0002	0.0002	0.0002
MUFA (%E)	10.3 (8.7; 12.3)	9.5 (7.6; 13.0)	11.8 (10.2; 14.0)	0.0008 [0.0282]	0.1370	0.0178	0.0022
PUFA (%E)	6.1 (4.7; 7.9)	8.6 (7.0; 10.8)	4.8 (3.9; 6.0)	0.0002 [0.1556]	0.0002	0.0002	0.0002
Vitamins							
Retinol-Equivalents (µg/1000 kcal)	435 (317; 641)	465 (330; 698)	453 (337; 650)	0.2719 [0.0076]	0.9175	0.1116	0.2759
Tocopherol-Equivalents (mg/1000 kcal)	7.2 (5.7; 9.4)	9.6 (7.9; 11.6)	6.0 (4.8; 7.6)	0.0002 [0.0978]	0.0002	0.0015	0.0002
Vitamin C (mg/1000 kcal)	45 (31; 64)	67 (43; 91)	44 (30; 66)	0.0015 [0.0361]	0.0004	0.2731	0.0398
Folate-Equivalents (μg/1000 kcal)	191 (101; 147)	152 (126; 185)	109 (83; 131)	0.0002 [0.0623]	0.0002	0.0768	0.0002
Vitamin B1 (µg/1000 kcal)	440 (360; 558)	605 (497; 700)	465 (413; 560)	0.0002 [0.0927]	0.0002	0.0413	0.0012
Vitamin B2 (µg/1000 kcal)	476 (382; 588)	381 (304; 483)	544 (458; 645)	0.0002 [0.0754]	0.0002	0.0149	0.0002
Vitamin B12 (µg/1000 kcal)	0.6 (0.4; 1.1)	0.1 (0.0; 0.2)	1.6 (1.2; 2.0)	0.0002 [0.2057]		0.0002	
Minerals							
Calcium (mg/1000 kcal)	390 (300; 494)	305 (236; 424)	400 (330; 474)	0.0011 [0.0266]	0.0026	0.9247	0.0182
Magnesium (mg/1000 kcal)	176 (153; 210)	251 (206; 305)	153 (135; 179)	0.0002 [0.2220]	0.0002	0.0216	0.0002
Iron (mg/1000 kcal)	6.8 (5.6; 7.8)	9.2 (7.6; 10.8)	5.7 (5.2; 6.6)	0.0002 [0.1922]	0.0002	0.0099	0.0002
Zinc (mg/1000 kcal)	4.7 (3.9; 5.3)	5.1 (4.3; 6.0)	5.0 (4.4; 5.6)	0.0002 [0.531]	0.0002	0.0137	0.1680

Safety of a vegan diet? - Children cohort

- Cross-sectional study
- 149 vegetarian, 115 vegan, and 137 omnivorous eating children and adolescents (6-18 yrs, mean age: 12.7 ± 3.9 yrs).
- Anthropometry, nutritional intake, and nutritional status were examined

Results:

- median calcium intake of VN was <50% of the reference value (VG: 56%, OM: 67%)
- No significant difference in **25-OH vitamin D3** between diet groups (VN more often supplemented)

Conclusion:

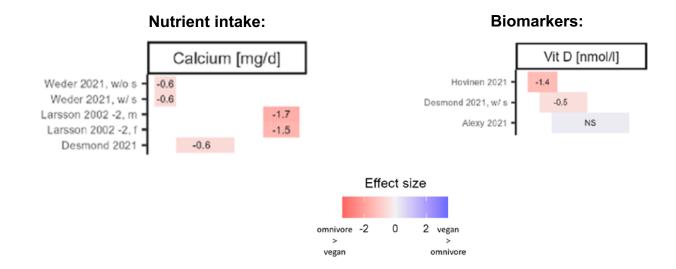
- Importance of dietary calcium sources (+/- fortified foods and drinks; +/- supplementation)

Limitations of study:

- "only" cross-section design
- non-representative population

Ca⁺⁺ & Vit D: children studies

Systematic review to evaluate health outcomes among vegan children and adolescents aged 0 to 18 years. 18 studies included.


CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2023.2263574

REVIEW

OPEN ACCESS

Open Access

Alina Kollera, Sabine Rohrmannb, Maria Wakolbingerc, Jan Gojdad, Eliška Selingercf, Monika Cahovag, Martin Světničkad, Sabrina Schlesinger J. Tilman Kühn, on and Jeffrey W. Kellerp

- → 40% (confidence interval from -64% to 0%) lower calcium intake among vegan children
- → no difference in vitamin D intake
- → Only one study compared bone mineral density (Desmond 2021)

Bone health: children studies

Growth, body composition, and cardiovascular and nutritional risk of 5to 10-y-old children consuming vegetarian, vegan, or omnivore diets

Małgorzata A Desmond, ^{1,2} Jakub G Sobiecki, ^{2,3} Maciej Jaworski, ⁴ Paweł Płudowski, ⁴ Jolanta Antoniewicz, ⁵ Meghan K Shirley, ⁶ Simon Eaton, ⁷ Janusz Książyk, ² Mario Cortina-Borja, ⁸ Bianca De Stavola, ⁸ Mary Fewtrell, ¹ and Jonathan CK Wells¹

- Objective: growth, body composition, cardiovascular and nutritional risk factors in vegetarian, vegan or omnivore fed children.
- Method: cross-sectional. 5-10 years old (63 vegetarian, 52 vegan, 72 omnivorous) measured: Anthropometry, Laboratory parameters, DEXA, Physical activity.

TABLE 3 Crude and adjusted mean differences of vegetarian and vegan children relative to omnivore children in bone, cardiovascular, and body iron status outcomes

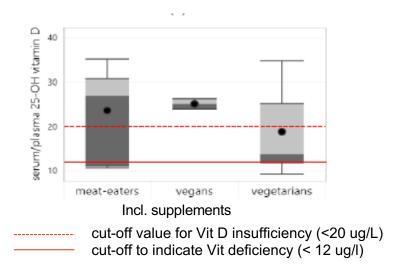
	Vegetarian	Vegan	Vegetarian	Vegan	Vegetarian	Vegan
Outcome group	Δ (95% CI)	Δ (95% CI)	Δ (95% CI)	Δ (95% CI)	Δ (95% CI)	Δ (95% CI)
Bone status ²	Model	13	Mode	1 24	N	Model 3 ⁵
TBLH BMC,6 %	-7.8 (-13.6, -2.1)**	-16.4 (-24.4, -8.4)**	-7.3 (-14.3, -0. 2)*	-15.2 (-25.4, -4.9)**	11 (-1.6, 3.8)	-3.7 (-7.0, -0.4)*
L2-L4 BMC,6 %	-5.3 (-10.5, 0.0)	-10.5 (-17.1, -3.9)**	-4.6 (-10.5, 1.3)	-9.3 (-17.6, -1.1)*	-0.05 (-4.6, 3.7)	-5.6 (-10.6, -0.5)*
BMAD z score	-0.086 (-0.408, 0.237)	-0.652 (-1.052, -0.253)**	-0.056 (-0.465, 0.353)	-0.615 (-1.099, -0.132)*	_	_
	-3.3 (-11.5, 4.9)	-12.6 (-21.8, -3.4)**	-2.2 (-12.5, 8.1)	-11.3 (-22.4, -0.2)*	_	_

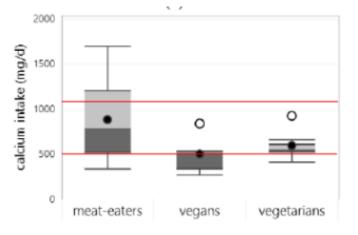
Conclusion:

vegan diet had a *healthier cardiovascular risk profile*, but also with *increased nutritional risk in* terms of deficiencies and *lower bone density and height*. Vegetarians show less pronounced nutritional deficiencies but (unexpectedly) less favorable cardiometabolic risk profiles.

Nutrients 2023, 15, 4341.

Review


Nutrient Intake and Status in Children and Adolescents Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review


Nicole Neufingerl O and Ans Eilander *O

Systematic review: nutrient intake and status of children and adolescents (2-18 y); literature search 2000 - 2022. 30 studies included

Results:

- In all diets, risks of inadequate intakes of vitamin D and calcium.

Boxplots represent 25th, 50th, and 75th percentiles of mineral intake based on studies that assessed intake from foods only, with whiskers at the <1.5 interquartile range (IQR). Black dots represent mean intake. White dots outliers.

estimated average requirement (EAR) for the age and gender (lowest and highest dietary requirements)

→ Heterogeneity of Ca⁺⁺ supply in studies high (3 out of 5 insufficient intake in VG and VN compared to OM).

Comment on **national and international and recommendations** (i.e. WHO, ESPGHAN, BLV, ...) for individuals consuming a plant-based diet. Discuss **dietary recommendations**, **fortified products**, **dietary supplements**

ESPGHAN "Complementary feeding" (JPGN 2017)

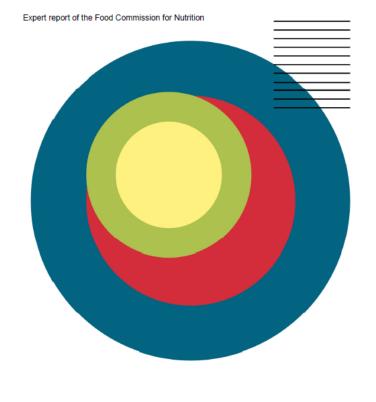
TABLE 1. Nutrients that may become deficient in different vegetarian and vegan diets

		Type of diet				
		/egetarian				
Nutrient	Lacto-ovo	Lacto	Ovo	Vegan		
Iron	X	X	X	X		
Zinc	X	X	X	X		
Calcium			X	X		
B12			X	X		
B2				X		
Vitamin D	X	X	X	X		
Vitamin A				X		
n-3 fats (DHA)	X	X	X	X		
Protein	X	X	X	X		

DHA = docosahexaenoic acid.

Vegan diets with appropriate supplements can support normal growth and development. Regular medical and dietetic supervision should be given and followed to ensure nutritional adequacy of the diet. The consequences of failing to do this can be severe and include irreversible cognitive impairment and death.

Vegan diets should only be used under appropriate medical or dietetic supervision to ensure that the infant receives a sufficient supply of vitamin B12, vitamin D, iron, zinc, folate, n-3 LCPUFA, protein, and calcium, and that the diet is sufficiently nutrient and energy dense. Parents should understand the serious consequences of failing to follow advice regarding supplementation of the diet.

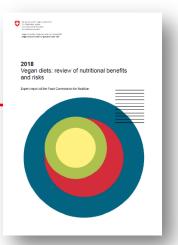

2016 - 2018: Expert report on vegan diet (Switzerland)

Eidgenössisches Departement des Innern ED Eidgenössische Ernährungskommission EEK

2018

Vegan diets: review of nutritional benefits and risks

Expert panel including representatives from:


- Medicine
- Food science
- Vegan society
 - Ethics

Federal Commission for Nutrition (FCN). Vegan diets: review of nutritional benefits and risks.

Expert report of the FCN. Bern: Federal Food Safety and Veterinary Office, 2018

EEK 2018 recommendation (Switzerland)

- Well-planned and supplemented vegan diets could theoretically meet nutrient requirements cover
- In reality, however, a deficiency of certain nutrients is often widespread
- Thus in infancy and toddler age vegan diet not recommended, but ...
- If highly motivated individuals wish to transition to or continue on a vegan diet, they should be indicated to
 - the dietary guidelines,
 - the required supplementation (always Vit B12) and
 - possible monitoring measures recommended

FCN 2018 recommendation (Switzerland)

Age group	Recommenda- tion	Specific dietary recommendations & supplementations	Testing
Infants	Not recommended	Exclusive breast feeding until 6 months Breast fed: according to laboratory analysis, B ₁₂ supplementation (of mother and infant) Formula-fed: adapted soy-infant formula Solid food • A sufficient supply of protein sources covering all essential amino acids • Energy-dense solid food, containing with ALA-rich oil supplements (linseed, walnut or rapeseed) Supplement • iron (mainly in breast-fed infants after 6 months) • Vitamin K, Vitamin D as for all infants • Vitamin B ₁₂ • evaluate zinc and iodine intake Dietitian/pediatrician support (diet diary / lab controls)	analysis of vitamin B ₁₂ * (infant's and mother's blood) consider also zinc, vit D, <i>Quick</i> , ferritin, TSH
Toddlers	Not recom- mended	 Check for energy intake (percentiles) developmental milestones and micronutrient intakes Limit raw food (lower digestibility, difficult to ingest, caloric density) Advise about grinding nuts (choking risk)) Check calcium intake (Ca-supplemented drinks, calcium rich mineral water) Check iodine supplementation (salt) Mandatory vitamin B₁₂ supplementation Vitamin D as recommended for all toddlers Dietitian/pediatrician support (based on the analysis of 3-day dietary records / lab controls) 	analysis of vitamin B12 * consider also zinc, vit D, Quick, ferritin, TSH

Federal Commission for Nutrition (FCN). Vegan diets: review of nutritional benefits and risks.

Expert report of the FCN. Bern: Federal Food Safety and Veterinary Office, 2018

Focus on health care professionals:

Handlungsanweisungen vegetarische und vegane Ernährung im Säuglings- und Kleinkindesalter

11.03.2020

Pascal Müller, Karolin Rose, Angelika Hayer, Laetitia-Marie Petit, Josef Laimbacher

Chapters:

- Critical nutrients in a vegetarian or vegan diet and consequences of a poorly controlled vegetarian/vegan diet.
- Practical nutrition principles in vegan diet (with calculated daily examples).
- Necessity of supplements with examples
- Laboratory analyses and their interpretation

Practical recommendation in early childhood

Food group	general recommendation*	supplementary recommendation for a vegan diet
Beverages	7 dl unsweetened beverages	 prefer calcium-rich tap or mineral water (> 300 mg calcium / liter) when eating a diet high in dietary fiber (from whole grain products, legumes, etc.), make sure to drink enough fluids
Vegetables and fruits	Daily 3 portions of vegetables and 2 portions of fruit	 consider variety (e.g. different varieties, different colors) preferably one dark green vegetable (e.g. broccoli, pea) daily Eat iron-rich foods (e.g. whole grains, legumes, soy products) together with vitamin C-rich fruits or vegetables (e.g. peppers, broccoli, citrus fruits)
Starchy foods	3-4 servings daily, prefer whole grains for cereal products	Consider variety

^{*}according to the fact sheet "nutrition for childreen" of the swiss society for nutrition (2019); www.sge-ssn.ch/ich-und-du/download/merkblaetter-und-unterlagen/

Practical recommendation in early childhood

Food group	general recommendation*	supplementary recommendation for a vegan diet
Protein-rich foods	Daily 3-4 portions of milk/products and additionally 1 portion of meat, fish, eggs, tofu, quorn, seitan and other protein-rich foods	 Replace dairy products, meat, fish and eggs with soy products (e.g. calcium-enriched soy drink/yoghurt, tofu, minced meat), chickpeas, lentils and other plant-based protein sources Consider variety In addition to (calcium-enriched) soy products, other sources are needed to cover the calcium requirement, e.g. Ca-rich vegetables, Ca-rich water, Ca-enriched foods
Nuts, seeds and kernels	Daily 1 tsp unsalted nuts, seeds and/or kernels in ground form or as a mush	Larger quantities desirableconsider variety
Oils and fats	Daily 3 tsp of high- quality vegetable oil. In addition, butter, margarine, cream etc. can be used sparingly (approx. 1 tsp)	Prefer vegetable oils with a high content of alpha-linolenic acid (omega-3 fatty acid) such as linseed oil, linseed yolk oil, hemp oil, tree nut oil, rapeseed oil

^{*}according to the fact sheet "nutrition for childreen" of the swiss society for nutrition (2019); www.sge-ssn.ch/ich-und-du/download/merkblaetter-und-unterlagen/

What dietary supplement products are available on the market in Switzerland? What to prescribe?

Vitamin D:

Different (medical) supplements of vitamin D available in Switzerland (Swissmedic listed) as well as food supplements (drops, tablets, capsules).

Vitamin D	400 IE im 1. LJ	ViDe 3 Tropfen (Wild): 1 Trpf
(Cholecalciferol) ^{III}	600 IE im 2. und 3. LJ	enthält 100 IE (nicht vegan)
		Dibase 10000 IE (Gebro
		Pharma): 1 Trpf enthält 200 IE
		(nicht vegan)
		enthält 800 IE
		Vitamin D3 (Bjökovit): 1 Trpf
		enthält 800 IE
		• u.a.

Source: Handlungsempfehlungen, SGP 2020

What dietary supplement products are available on the market in Switzerland? What to prescribe?

Calcium:

Different products of Calcium available in Switzerland (Swissmedic listed) like sachets, tablets, chewables.

Also in combination with vitamin D3.

Broad range of dietary supplements with Calcium alone, in combination with Vit D3 as well as multi-micronutrient (children-) products.

Conclusion

- Calcium supply in a plant-based diet is often below the recommendation, whitch
 is even more critical in combination with hypovitaminosis D
- (scarce) date indicate risk of reduced bone density in a vegan diet.
- Supply via (fortified) food combinations possible.
- Pay attention to calcium-enriched foods (especially drinks)
- Supplement vitamin D with 400 600 IU up to 3 years of age, regardless of diet
- Then, depending on the risk constellation (e.g. supplement in winter months)

→ get professional advice and support (dietician, pediatrician)

Thank you for your attention!

