Vitamin B₁₂ Status in Individuals Adhering to Plant-Based Diets

Luciana Hannibal, Ph.D.

Laboratory of Clinical Biochemistry and Metabolism Center for Pediatric and Adolescent Medicine Medical Center, University of Freiburg

SYMPOSIUM NUTRITION AND HEALTH Pflanzlichen Ernährung in der Pädiatrie: Braucht es Strategien zur Vorbeugung von Nährstoffmangel? Plant-based diets in Paediatrics: Are special strategies needed to prevent nutrient deficiencies? Thursday, November 30th, 2023

Human Metabolism: Where do Nutrients Come from?

Food Systems: Plant-based Foods and Climate Change

- **Recommended by:** IPCC 2019, EAT Lancet, economists, environmentalists and health experts 0
- **Benefits:** reduced land use for animal agriculture, reduce expenditure of drinking water, reduced 0 greenhouse gas emissions, reduction of chronic diseases (CVD, type 2 Diabetes, certain cancers) and with this reduction of healthcare costs, reduction and elimination of global food insecurity
- **Risks:** certain nutrient deficiencies, Se, Zn, Fe, and chiefly, vitamin B_{12} 0

NATURE | VOL 572 | 15 AUGUST 2019

Physiological Role of B₁₂: Cellular Metabolism

Esser, A.J.Hannibal, L. (2022). Versatile enzymology and heterogeneous phenotypes in cobalamin complementation type C disease. *iScience*.

Physiological Role of B₁₂: Gut Microbiome Metabolism

- Microbial communities that produce vitamin B₁₂
- \circ Microbiomal communities that use vitamin B_{12}
- \circ Microbial communities that convert vitamin B_{12} into vitamin B_{12} analogues
- Vitamin B₁₂ analogues in human plasma: associated with neurological disease
 - \circ Do microbiome-made B₁₂ analogues interfere with vitamin B₁₂ metabolism in human cells?
 - Can we modify the proportions of microbiome species that produce these vitamin B_{12} analogues by modifying dietary intake of B_{12} ?
 - \circ Is there specificity toward the chemical form of B₁₂, its food matrix and the dose?

"There is an urgent need to investigate the role of the gut microbiome in B_{12} metabolism and to elucidate its contribution to B_{12} depletion and analogue production" –Martin Warren

Osman, D... Warren, M. BBA - Molecular Cell Research 1868 (2021) 118896

Health Consequences of B₁₂ Deficiency

Int J Crit Illn Inj Sci. 2016 Apr-Jun; 6(2): 89–92

Neurological

Paresthesia Peripheral neuropathy Combined degeneration of the spinal cord

Hematological

Psychiatric

Irritability, personality

depression, psychosis

changes, dementia,

Megaloblastic anaemia Neutrophil hypersegmentation Pancytopenia

Severe B₁₂ deficiency: Cerebral atrophy

Journal of Paediatrics and Child Health 49 (2013) E348–E354

 Diagnostic challenge in acquired B₁₂ deficiency: long asymptomatic phase; unspecific symptoms

Esser, A.J.Hannibal, L. (2022). Versatile enzymology and heterogeneous phenotypes in cobalamin complementation type C disease. *iScience*.

Diagnostics: Four Biomarkers of B₁₂ Status

Limitations:

- \circ Hcy: influenced by other B vitamins (folate, B₉), (pyridoxal phosphate, B₆).
- MMA: increased in renal disease
- Serum Cbl: misses genetic and pharmacological disorders of metabolism.
- o holo-TC: misses genetic and pharmacological disorders of metabolism.

<u>Recommendation</u>: measurement of at least <u>two</u> biomarkers (Serum B_{12} + MMA)

Hannibal, L. et al. Front Mol Biosci. 2016; 3: 27.

Diagnostics: Four Biomarkers of B₁₂ Status

Traditional Approach

- Serum B₁₂: Single Biomarker, WHO:
- >221 pmol/L : Adequate B₁₂ status
- 148-221 pmol/L: Low B₁₂
- <148 pmol/L: B₁₂ Deficiency

Allen LH. Guidelines on food fortification with micronutrients. World Health Organization. Geneva: Department of Nutrition for Health and Development, 2006.

- Multiple Biomarkers:
- Hcy: 5-15 μmol/L; >15 μmol/L
- MMA: 0.15-0.35 μmol/L; > 0.35 μmol/L
- B₁₂: 150-600 pmol/L; <150 pmol/L
- holo-TC: 20-125 pmol/L; >20 pmol/L

Hannibal, L. et al. Front Mol Biosci. 2016; 3: 27.

Optimized Approach

- Combined B₁₂ Index: cB₁₂
- · Accounts for: 2, 3 and 4 biomarkers
- Accounts for: Age, folate status

Diagnostics: Cut-offs of B₁₂ Biomarkers in Vegetarians

Naik et al. propose a new set of cut-off values to improve the diagnosis of vitamin B₁₂ deficiency in young vegetarian Indians. The authors propose the use of a combination of biomarkers and cut-off values of 100 and 19·6 pmol/L for plasma vitamin B₁₂ and holo- TC, respectively, and values of tHcy of 17·6 and 27 µmol/L for females and males, respectively.

<u>Source</u>: Naik S, Mahalle N & Bhide V (2018) Identification of vitamin B_{12} deficiency in vegetarian Indians. Br J Nutr

British Journal of Nutrition (2018), 119, 967–969
 © The Author 2018
 Invited Commentary
 Invited commentary in response to: 'Identification of vitamin B₁₂ deficiency in vegetarian Indians'

Diagnostics: B₁₂ Biomarkers Upon Dietary Transition

- Healthy adults omnivores from Southwestern Germany
- Participants received education, a cook book, and weekly supervision
- Isocaloric Vegan (VD) or Meat-reach diets (MD), 4-weeks
- Run-in phase: 2 weeks; toward a homogeneous omnivore diet
- Vegan meals offered alongside a meat-based buffet at the restaurant of University Hospital Freiburg

Prof. Roman Huber Dr. Ann-Kathrin Lederer

	Vegan \pm SD (n = 26)	Meat-Rich \pm SD ($n = 27$)	<i>p</i> -Value
Age (years)	33.2 ± 11.2	29.9 ± 9.5	0.407
Baseline: Body mass index (kg/m ²)	22.9 ± 2.2	23.3 ± 2.6	0.444
End of study: Body mass index (kg/m ²)	22.7 ± 2.0	23.4 ± 2.6	0.240
Gender (male/female, %)	31/69	44/56	0.309

Table 1. Demographic data of participants in vegan diet group and in meat-rich group (SD = Standard deviation, *p*-value from *t*-test).

Vitamin B₁₂ Status Upon Short-Term Intervention with a Vegan Diet-A Randomized Controlled Trial in Healthy Participants. **Lederer AK*, Hannibal L***, Hettich M, Behringer S, Spiekerkoetter U, Steinborn C, Gründemann C, Zimmermann-Klemd AM, Müller A, Simmet T, Schmiech M, Maul-Pavicic A, Samstag Y, Huber R. *Nutrients*. 2019 Nov 18;11(11):2815.

B₁₂ and Folate Intakes after MD and VD Transitions

Vitamin B₁₂ Status Upon Short-Term Intervention with a Vegan Diet-A Randomized Controlled Trial in Healthy Participants. Lederer AK*, Hannibal L*, et al. Nutrients. 2019 Nov 18;11(11):2815. doi: 10.3390/nu11112815.

Plasma B₁₂ Biomarkers after MD and VD Transitions

Vitamin B₁₂ Status Upon Short-Term Intervention with a Vegan Diet-A Randomized Controlled Trial in Healthy Participants. Lederer AK*, Hannibal L*, et al. Nutrients. 2019 Nov 18;11(11):2815. doi: 10.3390/nu11112815.

12

Conclusions: B₁₂ Biomarkers Upon Dietary Transition

- A reduction in the intake of B_{12} led to 18% lower plasma B_{12} and 30% lower holo-TC concentrations in healthy subjects, in 4-weeks
- holoTC early marker of changes in B_{12} intake: possibly a fast-responding biomarker to monitor B_{12} status in vegetarians and vegans
- Hcy and MMA: did not change during the 4-week intervention

Vitamin B₁₂ Status Upon Short-Term Intervention with a Vegan Diet-A Randomized Controlled Trial in Healthy Participants. Lederer AK*, Hannibal L*, et al. Nutrients. 2019 Nov 18;11(11):2815. doi: 10.3390/nu11112815.

B₁₂ Biomarkers in Long-Term Plant-Based Dieters

Cohort and Diet Characteristics

- Young, physically active healthy adults from Southwestern Germany
- No dietary supervision 0
- On diet for > 2 years
- Age- and sex-matched groups
- Diet record, supplement use record, and biospecimen sampling 0

Prof. Roman Huber

Dr. Max Storz

NNALS OF MEDICINE 023, VOL. 55, NO. 2, 2269969 ttps://doi.org/10.1080/07853890.2023.2269969	
ESEARCH ARTICLE	OPEN ACCESS OPEN ACCESS
ohysically-active German omnivores, vegeta adequate vitamin B ₁₂ status in supplemente	rians and vegans reveals ed vegans

Storz, ... Hannibal, L. Annals of Medicine 2023, 55, 2, 2269969

B₁₂ Biomarkers in Long-Term Plant-Based Dieters

- Similar B₁₂
 biomarker profile in omnivores and vegans
- Lowest plasma B₁₂
 and holo-TC
 observed in
 ovolactovegetarians

Storz, ... Hannibal, L. Annals of Medicine 2023, 55, 2, 2269969

B₁₂ Biomarkers in Long-Term Plant-Based Dieters: cB₁₂

- Similar cB₁₂ index in omnivores and vegans
- Lowest cB₁₂ index in ovolactovegetarians, significantly different to that of omnivores and vegans

Supplement Use in Long-Term Plant-Based Dieters

	Omnivores (n=40)	Lacto-Ovo-Vegetarians (n=37)	Vegans (n=38)	p-value
Supplement intake				0.561 ª
Yes	n = 31 (77.5%)	n = 30 (81.08%)	n = 33 (86.84%)	
No	n = 9 (22.5%)	n = 7 (18.92%)	n = 5 (13.16%)	
Multivitamin supplement intake				0.045 ^a
Yes	n = 9 (22.5%)	n = 10 (27.03%)	n = 18 (47.37%)	
No	n = 31 (77.5%)	n = 27 (72.97%)	n = 20 (52.63%)	
Vitamin B ₁₂ supplement intake				< 0.001 ª
Yes	n = 11 (27.5%)	n = 19 (51.35%)	n = 34 (89.47%)	
No	n = 29 (72.5%)	n = 18 (48.65%)	n = 4 (10.53%)	
Dosage (µg)	25 (335.5)	400 (977.5)	250 (980)	0.136 ^b
Frequency (day/year)	180 (287)	40 (144)	365 (209)	0.001 ^b
Legend: ^a = based on Stata's Chi-Sq	uare Test of independe	nce; ^b = based on Kruskal-Wallis H te	st	

Storz, ... Hannibal, L. Annals of Medicine 2023, 55, 2, 2269969

B₁₂ Status and Metabolism in Long-Term Plant-Based Diets

- Plant-based diets, in particular the vegan diet, exhibited the most favorable patterns of lipid metabolism and glycemic control, but the lowest food intake of B₁₂.
- Analysis of B₁₂ status (including 4c B₁₂) revealed adequacy in omnivores and vegans, and a poorer B₁₂ status amongst lacto-ovo-vegetarians.
- Supplementation with B_{12} (median 250 µg B_{12} /day, over 1 year) in healthy physically-active vegans secured an adequate B_{12} status that was comparable to that of healthy omnivores.

Dietary Sources of B₁₂

- Vitamin B₁₂ is exclusively synthesized by a few groups of bacteria and archaea
- \circ Animals, including humans, are unable to make their own B₁₂
- Animals obtain B₁₂ by environmental exposure, for example, to soil bacteria
- Omnivore humans obtain B₁₂ by eating animals who have been previously in contact with soil or other environmental sources of B₁₂

Omnivores

Vegetarians

• Meat, dairy, eggs

- Algae (Chlorella)

• Dairy, Eggs

• Algae (Chlorella)

γ

Vegans

• Algae (Chlorella)

Dairy and eggs provide insufficient quantities of $\rm B_{12}$ Algae preparations contain variable amounts of $\rm B_{12}$

Adequate Intake of B₁₂

Table 1. Recommended intake of vitamin B12 according to the Nordic Nutrition Recommendations 2012

Population*	Recommended intake (µg/d)
Infants, 6–11 months	0.5
Infants/children, I2–23 months	0.6
Children, 2–5 years	0.8
Children, 6–9 years	1.3
Adults and children from 10 years	2.0
During lactation	2.6

*No recommended intake for children <6 months.

Source: Food & Nutrition Research 2023, 67:8626

Table 1: Recommende [1]	d Dietary A	llowances	(RDAs) for Vit	amin B12
Age	Male	Female	Pregnancy	Lactation
Birth to 6 months*	0.4 mcg	0.4 mcg		
7-12 months*	0.5 mcg	0.5 mcg		
1–3 years	0.9 mcg	0.9 mcg		
4-8 years	1.2 mcg	1.2 mcg		
9–13 years	1.8 mcg	1.8 mcg		
14–18 years	2.4 mcg	2.4 mcg	2.6 mcg	2.8 mcg
19+ years	2.4 mcg	2.4 mcg	2.6 mcg	2.8 mcg

* Adequate Intake (AI)

Source: National Institutes of Health (NIH), USA

- European Food Safety Authority (EFSA):
 - Between 1.5 and 4.0 μg/day, depending on age
 - $\circ~$ Between 4.5 and 5.0 $\mu g/day$ for pregnant and lactating women
- Based on data from 13 dietary surveys in nine European Union countries:
 - Average cobalamin intake ranges across countries:
 - Infant < 1 year: 0.8–2.1 μg/day
 - Children 1 to < 3 years: 2.2–4.0 μg/day
 - Children 3 <10 years: 2.6–5.7 μg/day
 - Children 10 <18 years: 3.3–6.6 μg/day
 - o Adults: 4.2–8.6 μg/day

Source: EFSA Journal 2015;13(7):4150

	Vegan	Lacto- vegetarians	Ovo- vegetarians	Lacto-ovo vegetarians	Pescatarian	Flexitarian*	Omnivore
Fruits, vegetables, legumes, and nuts							
Dairy products	\mathbf{O}		\mathbf{O}				
Eggs	\bigcirc	\mathbf{O}					
Fish and seafood	\mathbf{O}	\mathbf{O}	\mathbf{O}	\mathbf{O}			
Meat	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
Vitamin B ₁₂ found from foods in diet ^{*1}	None						High
Sustainability of diet	High						Low

 \circ Dietary vitamin B₁₂ intake decreases with a greater plantbased diet:

Estimated daily B₁₂ intakes:

7.2 µg in meat-eaters 0.4 µg in vegans

Davey GK, Spencer EA, Appleby PN et al (2003) EPIC-Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33 883 meateaters and 31 546 non meat-eaters in the UK. Public Health Nutr 6:259–268

The Importance of Vitamin B₁₂ for Individuals Choosing Plant-Based Diets. Ali Niklewicz, (...), Luciana Hannibal*, Martin Warren*, P Julian Owen*, on behalf of CluB-12. Eur J. Nutr. 2022

Plant-Based Diet Studies in Children

- Population of 176,702 children screened over 27 months
- 33 Children detected by NBS in whom maternal vitamin B₁₂ deficiency was confirmed
- $\circ~$ Hcy was the most sensitive marker of B_{12} deficiency, however, MMA was necessary to capture all 33 children
- o 89% of Mothers adhere to a balanced omnivore diet
- 84% of Children were treated with oral vitamin B₁₂ and remained without clinical symptoms
- With an incidence of 1:5355 newborns, nutritional vitamin B_{12} deficiency is more frequent than inborn errors of metabolism included in NBS panels.
- Treatment of vitamin B₁₂ deficiency is easy and beneficial also for undiagnosed affected mothers

THE JOURNAL OF PEDIATRICS • www.jpeds.com	ORIGINAL	
	ARTICLES	
Newborn Screening for Vitamin B ₁₂ Deficiency in Germany—Strategies, Results, and Public Health Implications		
Gwendolyn Gramer, MD ¹ , Junmin Fang-Hoffmann, MD ¹ , Patrik Feyh ¹ , Glynis Klinke, PhD ¹ Ulrike Mütze, MD ¹ , Roland Posset, MD ¹ , Karl Heinz Weiss, MD ² , Georg F. Hoffmann, MD ^{1,*} ,	¹ , Peter Monostori, PhD ¹ , and Jürgen G. Okun, PhD ^{1,*}	

J Pediatr. 2020 Jan;216:165-172.e4. doi: 10.1016/j.jpeds.2019.07.052. Epub 2019 Oct 8.

Plant-Dased Diet Studies in Children

Systematic review: 13 Studies reported vitamin B_{12} intake Studies on Vitamin B_{12} Intake:

- Vegans do not the meet the estimated average requirement (EAR) of vitamin B12 according to age and sex:
 - -Meat-eaters: 3.49 µg/d
 - -Vegetarians: 1.66 µg/d
 - -Vegans: 0.59 μg/d

Studies on Vitamin B₁₂ Intake + Supplements:

- Highest average vitamin B12 intake among vegans:
 - -Meat-eaters: 28.8 μg/d
 - -Vegetarians: 5.2 μg/d
 - -Vegans: 116.6 μ g/d

Nutrient Intake and Status in Children and Adolescents Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Neufingerl, N and Eilander, A. Nutrients 2023, 15(20), 4341; https://doi.org/10.3390/nu15204341

Plant-Based Diet Studies in Children

Table 2. Overview of nutrients at risk of inadequacy and nutrients of favorably high intake across dietary patterns.

Dietary Pattern	Nutrients at Risk of Inadequacy *	Nutrients of Favorably High Intake	
Vegans	Vitamin B12, vitamin D Calcium, iron, zinc	PUFA, fiber Vitamin C, vitamin E, folate	
Vegetarians	SAFA, PUFA **, fiber Vitamin B12, vitamin D Calcium, iron, zinc	Vitamin E, folate	
Meat eaters	SAFA, PUFA, fiber Vitamin D, vitamin E, folate Calcium	Vitamin B12 Zinc	

* All diet groups may be at risk of inadequate intake of iodine and EPA and DHA, but data are too limited to draw firm conclusions. ** Whereas mean PUFA intake in vegetarian children was in line with the recommendations, the mean intake inadequate in three out of seven studies.

Nutrient Intake and Status in Children and Adolescents Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Neufingerl, N and Eilander, A. Nutrients 2023, 15(20), 4341; https://doi.org/10.3390/nu15204341

Plant-Based Diet Studies in Adults

Eur J Nutr (2017) 56:283–293 DOI 10.1007/s00394-015-1079-7	CrossMark
ORIGINAL CONTRIBUTION	
Micronutrient status and intake in and vegans in Switzerland R. Schüpbach ¹ · R. Wegmüller ^{1,2} · C. Berguerand ³ · M. J	omnivores, vegetarians Bui ³ · I. Herter-Aeberli ¹

- Omnivores (n =100), vegetarians (n = 53) and vegans (n=53), aged 18-50 years old.
- All three dietary groups exhibited insufficient intake of several micronutrients
- "Vegans reported low intakes of ... vitamin B12. Despite negligible dietary vitamin B12 intake in the vegan group, deficiency of this particular vitamin was low in all groups thanks to widespread use of supplements"
- Conclusions: Despite substantial differences in intake and deficiency between groups, our results indicate that by consuming a well-balanced diet including supplements or fortified products, all three types of diet can potentially fulfill requirements for vitamin and mineral consumption.

Eur J Nutr. 2017 Feb;56(1):283-293. doi: 10.1007/s00394-015-1079-7. Epub 2015 Oct 26.

Plant-Based Diet Studies in Adults

food & nutrition C
REVIEW ARTICLE Intake of vitamin B12 in relation to vitamin B12 status in groups susceptible to deficiency: a systematic review
Linnea Bärebring ¹ , Christel Lamberg-Allardt ² , Birna Thorisdottir ³ , Alfons Ramel ⁴ , Fredrik Söderlund ⁵ , Erik Kristoffer Arnesen ⁶ , Bright I. Nwaru ⁷ , Jutta Dierkes ^{8,9} and Agneta Åkesson ⁵

Included populations were:

- Children (0–18 years), young adults (18–35 years), pregnant or lactating women, older adults (≥65 years) and vegans or vegetarians.
- "In conclusion, evidence is insufficient to assess if habitual B_{12} intake or an intake in line with the current Nordic RI is sufficient to maintain adequate status for all included populations. Population-based cohort studies and low-to moderate dose interventions that address this question are highly warranted."

Food Nutr Res. 2023 Jun 30:67. doi: 10.29219/fnr.v67.8626. eCollection 2023.

National and International Recommendations

• German Federal Institute for Risk Assessment (BfR)

Recommendation for food supplements, and the fortification of solid foods and beverages with vitamin B₁₂:

"The German Federal Institute for Risk Assessment (BfR) recommends a maximum level of 25 micrograms (μ g) of vitamin B₁₂ per daily recommended dose of a food supplement (Table 1). For fortification of conventional foods, assuming a saturated market of fortified foods (30 % of daily energy intake comes from of fortified foods), a maximum level of 6 μ g/100 grams (g) is recommended for solid foods and of 1.6 μ g/100 millilitres (ml) for beverages (Table 1)"

Food categoryMaximum levelsFood supplements (per daily recommended dose of an individual product)25 μgFortified solid foods (per 100 g)6 μgFortified beverages (per 100 ml)1.6 μg

Table 1: Proposed maximum levels

Source: <u>https://www.bfr.bund.de/de/start.html</u> Last published update: 18.10.2023

National and International Recommendations

• Position of CluB-12

European Journal of Nutrition (2023) 62:1551–1559 https://doi.org/10.1007/s00394-022-03025-4

COMMENT

The importance of vitamin ${\rm B}_{12}$ for individuals choosing plant-based diets

Ali Niklewicz¹ · A. David Smith² · Alison Smith³ · Andre Holzer³ · Andrew Klein⁴ · Andrew McCaddon⁵ · Anne M. Molloy⁶ · Bruce H. R. Wolffenbuttel⁷ · Ebba Nexo⁸ · Helene McNulty⁹ · Helga Refsum¹⁰ · Jean-Louis Gueant¹¹ · Marie-Joe Dib¹² · Mary Ward⁹ · Michelle Murphy¹³ · Ralph Green¹⁴ · Kourosh R. Ahmadi¹ · Luciana Hannibal¹⁵ · Martin J. Warren¹⁶ · P. Julian Owen¹⁷ · on behalf of CluB-12

Received: 20 May 2022 / Accepted: 5 October 2022 / Published online: 5 December 2022 $\ensuremath{\mathbb{C}}$ The Author(s) 2022

Key Recommendations to prevent vitamin B12 deficits for individuals choosing a plant-based diet:

A daily vitamin B12 supplement taken with other foods for optimal absorption.

Check for

Check food packaging labels for vitamin B12 fortified products when opting for plant-based animal alternative diets.

Be aware that vitamin B12 deficiency can occur without developing anaemia and often neurological symptoms are more commonly observed (fatigue, memory impairment, cognitive changes, and depression).

Have your blood vitamin B12 levels monitored, particularly if no B12-containing supplements have been taken in the last 3-6 months.

Seek expert advice to support planning a plant-based diet or if you are: [a] transitioning to a vegan diet, [b] planning to become pregnant, or [c] older than 60 years of age.

" A recommendation of 4–20 μ g/day is more appropriate to prevent B₁₂ deficiency across the life-course."

"Considering the above caution, we support well-planned plant-based diets enhanced with vitamin B₁₂, which have the ability to positively impact both human and planetary health."

National and International Recommendations

o Recommedations for children and adolescents from studies in Canada and Norway

"Daily consumption of supplemental vitamin B_{12} up to 10 µg by children > 6 years old and adolescents and up to 10–25 µg by older adults is associated with higher vitamin B_{12} status."

food & nutrition (

REVIEW ARTICLE Vitamin $B_{\rm 12}-a$ scoping review for Nordic Nutrition Recommendations 2023

Anne-Lise Bjørke-Monsen^{1*} and Vegard Lysne²

"A vitamin B₁₂ intake from 3 to 4.9 μ g/day may be adequate for younger children, whereas children >10 years may need a vitamin B₁₂ intake in the range of 5.3–10 μ g/day."

Dietary Supplements Available in the Market

- \circ B₁₂ Supplements with tablets containing 50, 250, 350, 425 and 1000 µg vitamin B₁₂
- \circ Multi-vitamin supplements with 4 and 10 µg Vitamin B₁₂
- Pre-conception, for pregnancy, and for lactation multi-vitamin supplements: 4-10 μg vitamin B₁₂

Open Questions for Further Research

- $\,\circ\,$ What dose and chemical form of B_{12} should be recommended to individuals on plant-based diets?
- Should a distinction be made in formulations for vegetarians and vegans?
- What set of B₁₂ biomarkers should be monitored to identify subclinical B₁₂ deficiencies that merit treatment initiation in plant-based dieters?
- Should clinically asymptomatic individuals in plant-based diets having elevated blood biomarkers be selected for treatment initiatiation with B₁₂?

Acknowledgements

Hannibal Lab and MetaboCF Members

Collaborators on B₁₂ and Nutrition Studies

Austria

Germany

Prof. Roman Huber Dr. Max Storz Germany

Patient and Scientific Organisations

Denmark

Prof. Martin Warren

UK

Funding agencies

BMWi, NIHS, Wissenschaftliche Gelleschaft Freiburg, DFG, intramural support

32